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The one-dimensional motion of a massless Brownian particle on a symmetric periodic substrate can be
rectified by reinjecting its driving noise through a realistic recycling procedure. If the recycled noise is
multiplicatively coupled to the substrate, the ensuing feedback system works like a passive Maxwell’s daemon,
capable of inducing a net current that depends on both the delay and the autocorrelation times of the noise
signals. Extensive numerical simulations show that the underlying rectification mechanism is a resonant non-
linear effect: The observed currents can be optimized for an appropriate choice of the recycling parameters
with immediate application to the design of nanodevices for particle transport.
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I. INTRODUCTION

When control or spurious signals, either periodic or
noisy, are injected into an extended system, they can couple
a variable of interest x�t� through different channels, addi-
tively or multiplicatively, alike. While being transmitted
across the system components, an input signal may undergo
the following �1,2�:

�a� Time delay, due to the combination of diverse propa-
gation or transduction mechanisms. As a result, an input sig-
nal ��t� can split into two or more forcing signals �i�t� acting
on x�t�, each with a time delay �d

�i�, i.e.,

�i�t� = �Qi��t − �d
�i�� . �1.1�

Let us consider, for instance, an electric signal acting on a
particle of coordinate x�t� in a narrow channel after propa-
gating, e.g., through two different nondispersive media, as
illustrated in Fig. 1�a�. Regardless of the nature of the input
signal, a wave train or random pulses, the time delay �d of
E2�t� relative to E1�t� depends on the electromechanical
properties of the medium surrounding the channel; moreover,
the two drives are likely to couple the particle differently:
E1�t� pulls the particle horizontally and, therefore, additively,
while E2�t� propagates normally to the channel, thus
modulating multiplicatively its effective substrate potential.

�b� Time correlation, due to the finite response time of the
system components. The relevant response, or transfer func-
tions modulate the amplitude of the signals �i�t� effectively
coupled to the variable of interest x�t� and, more importantly,
determine a finite autocorrelation and/or decay time �c

�i� for
each �i�t�, depending on its coupling channel �1,3�.

Figure 1�b� shows the ideal case of a particle diffusing
through a one-dimensional �1D� pore, or channel in a homo-
geneous dielectric medium with relaxation time �c; the
sample is placed between the plates of a capacitor subjected
to a variable voltage. The particle is thus directly coupled to
the time-dependent electric field E1�t�; however, its mobility
in the x direction changes in time as the channel cross section
is modulated by the electrostriction effects induced by the
capacitor. The potential energy of the particle along its path

is thus a function of the local field E2�t�, which, in turn, can
be regarded as a dielectric response to the input E1�t�. As
long as the frequency dependence of �c can be neglected
�low frequency regime�, amplitude and phase shift of each
spectral component of E2�t� can be explictly computed in
linear response theory �1�. If E1�t� is a random signal with
correlation time �c

�1�, then E2�t� is an autocorrelated noise
with time constant �c

�2�=�c+�c
�1� �3�, while the primary, E1�t�,

and the secondary signal, E2�t�, are cross correlated
with effective time constant �c. If E1�t� is an ac field with
angular frequency �, the signal E2�t� modulating the channel
develops a time delay �c�arctan���c� /� �4�.

In this paper we work with stationary Gaussian noise
sources and restrict ourselves to the case of two distinct cou-
pling channels, only, so that a given noise source ��t� splits

FIG. 1. �Color online� Effective action of an external field of
force on a Brownian particle in a narrow channel: �a� The external
field splits into a direct, E1�t�, and a transmitted component, E2�t�,
that couple to the particle with relative delay �c; �b� the field
couples to the particle both directly, E1�t�, and modifying its envi-
ronment through the local field E2�t�. In both cases E2�t� modulates
the channel geometry �multiplicative coupling�.
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into two colored driving noises, ��t�→�1�t� ,�2�t�, with cor-
relation times �c

�1� and �c
�2�, and delay times �d

�1� and �d
�2�. To

simplify our notation we further assume that �i� �c
�1�=�c

�2�

=�c�0; �ii� �d
�2�−�d

�1�=�d�0, which for a stationary ��t� is
equivalent to setting �d

�1�=0 and �d
�2�=�d.

For the purpose of numerical simulation, conditions �i�
and �ii� are satisfied by noises of the form �1.1� with ��t� a
Gaussian noise with autocorrelation function �3�

���t���0�� = e−	t	/�c/�c. �1.2�

All correlation functions ��i�t�� j�0��, with i , j=1,2,
can
be readily expressed in terms of the autocorrelation function
�1.2�. According to this notation, for practical purposes
we term �1�t� the primary or source noise, and �2�t� the
secondary or recycled noise �with no reference to ��t��.

Physical systems driven by delayed correlated noises are
rather common in nature, typical examples being the propa-
gation of charge density waves �5,6�, the migration of both
pointlike and linear defects in crystalline materials �7�, the
transport of nanoparticles in biological �8� and artificial
channels �9�, the manipulation of vortex lines in supercon-
ducting devices �10�, and colloidal particles along 1D tracks
�11�, to mention but a few.

In most models discussed in the literature, the input signal
��t� is time periodic and so are the two �or more� driving
terms �i�t� �6,12,13�: A given phase lag between two additive
signals �6,12� or between an additive and a multiplicative
signal �13,14� may breach the spatial symmetry of the under-
lying x dynamics, thus inducing a net current �ẋ�. �Note that
the average of �ẋ� over a uniform distribution of the phase
lag vanishes �spontaneous symmetry breaking mechanism�.�
Here, we consider similar models with the difference that the
ac drives are replaced by the noises �i�t� introduced above.

Our models with two �or more� delayed noises should not
be mistaken for the nonlinear systems with delay recently
investigated by several groups in the context of stochastic
resonance �15,16�: These authors proposed to control the dy-
namics of x�t� by utilizing appropriate functions of x�t−�d�
as feedback terms. This is a well-established control tech-
nique in physics and electrical engineering �2�. Extended ex-
perimental apparatuses, where both types of delays �from
recycling and feedback� must be taken into account, are, for
instance, the gravitational-wave interferometers, like the
VIRGO detector �17�. Here, an external signal ��t�, e.g., a
seismic disturbance, enters the antenna by creeping through
its mechanical suspensions and dampers and eventually com-
bines with the intrinsic electronic and photonic noises of the
apparatus, so that the detection signal x�t�, corresponding
to the mirror displacement induced by the gravitational
signal, is additively and multiplicatively affected by ��t� at
different times. Moreover, the control loops that maintain the
alignment and the locking of the interferometer, make use of
sophisticated feedback techniques also involving x�t�.

In all examples mentioned so far, the multiple action of an
external disturbance is often regarded as a nuisance; on mod-
eling the system of interest one simply takes notice of its

presence and tries to minimize its impact on the system re-
sponse. In our approach we took a more “proactive” stance,
namely, we propose to tap the primary noise source �1�t� and
reinject the recycled noise signal �2�t� into the system so as
to control its response. At variance with an earlier attempt
�18�, we consider here the motion of a massless Brownian
particle diffusing on a symmetric 1D periodic substrate; for
appropriate choices of the time constants �c and �d the par-
ticle drifts sidewise with net velocity �ẋ�. Such a mechanism
can be viewed as an automated Maxwell’s daemon, where
the rectification of the primary noise signal �1 is achieved
through a preassigned recycling protocol: Lacking the dex-
terity originally assumed by Maxwell, our “dumb” stochastic
daemon performs its chore “in average” and with reduced
�but dependable� efficiency. Note that rectification of a pri-
mary noise by nonlinear interference with a recycled image
of itself can hardly be assimilated to a ratchet mechanism
�19�, as here no spatial substrate asymmetry is required.
Needless to say that noise recycling, although implemented
in a stationary fashion, implies a nonequilibrium protocol;
therefore, the ensuing rectification current violates in no way
the second law of thermodynamics.

This paper is organized as follows: In Sec. II the primary,
�1, and the secondary noise, �2, are coupled additively to an
overdamped variable x bound to either a parabolic well
�Ornstein-Uhlenbeck process� or a quartic double well
�Kramers problem� �1�. In Sec. III we simulate numerically a
massless Brownian particle diffusing, under the action of an
additive primary noise �1, in a 1D cosine potential modulated
in amplitude by the recycled noisy term �2. The particle rec-
tification current �ẋ� attains an optimal intensity in an appro-
priate range of the time constants �c and �d. In Sec. IV we
discuss the dependence of �ẋ� on the remaining simulation
parameters in view of the potential applications of our recti-
fication scheme to the design of nanodevices for particle
transport.

II. NOISE RECYCLING

The technique of noise recycling is well known in laser
interferometry �17�: One extracts a signal from the fluctua-
tion source to be suppressed and reinjects it into the system
after appropriate manipulation; the process involves a certain
number of steps, like analogue or digital acquisition, usage
of filters and actuators, etc., which eventually cause a delay
of the feedback �2�t� with respect to the primary signal �1�t�.

In order to familiarize the reader with the interplay of two
delayed noises, we first consider the Ornstein-Uhlenbeck
process

ẋ = − ax + �1�t� ± �2�t� , �2.1�

where �1�t�=�Q1��t� and �2�t�=�Q2��t−�d�, with �d�0,
and ��t� denotes a zero-mean, white Gaussian noise with
autocorrelation function ���t���0��=2��t�. The stochastic
differential equation �SDE� �2.1� can be treated analytically
by means of standard techniques �1,2�. In particular,
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��x�t� − x�0��2� =
Q1 + Q2

a
�1 − e−2at� ± 2

�Q1Q2

a

	e−a�d�1 − e−2a�t−�d��
�t − �d� , �2.2�

where 
�x� is the Heaviside step function and asymptotically

�x2� 
 lim
t→�

��x�t� − x�0��2� =
1

a
��Q1 + Q2� ± 2�Q1Q2e−a�d� .

�2.3�

Analogously, one can compute the autocorrelation function

C�t� = lim
�→�

�x�t + ��x���� =
�Q1Q2

a

	e−at�Q1 + Q2

�Q1Q2

± �e−a�d + e−a�	t−�d	−t��� �2.4�

with �d�0. Note that C�−t�=C�t� and C�0�= �x2��0, as it
should.

In Fig. 2 we compare numerical simulation results with
our predictions �2.3�, inset, and �2.4�, main panel: in all cases
the corresponding data sets are indistinguishable. Notice that
sampling the x autocorrelation only for t��d, thus overlook-
ing the possibility that the process can be driven by two
delayed noises, would lead to a wrong estimate of �x2�, i.e.,

�x2� →
1

a
��Q1 + Q2� ± 2�Q1Q2 cosh�a�d�� , �2.5�

versus the correct value �2.3�. Generalizations of the process
�2.1� to account for colored noises, with exponential autocor-
relation functions of the type in Eq. �1.2�, and/or inertial
effects, with ẋ replaced by ẍ+ẋ, can also be treated analyti-
cally. Harmonic analysis �2� yields straightforward, though
cumbersome expressions for C�t�.

More suggestive is the nonlinear case of a massless
particle bound to a quadratic double well potential
V�x�=−ax2 /2+bx4 /4 �3,4�,

ẋ = ax − bx3 + �1�t� ± �2�t� , �2.6�

with �1 and �2 defined as above, and a, b�0. Subjected to
the random kicks by the fluctuation sources, the overdamped
Brownian particle hops between two bistable states centered
at ±�a /b and separated by the potential barrier �V=a2 /4b.
According to Kramers’ rate theory, the relevant hopping time
�1,4� in the low noise regime is

TK
±��d� =

��2

a
exp� �V

D±��d�
� , �2.7�

where D±��d� is the effective noise intensity of �1�t�±�2�t�, to
be determined next.

For zero delay, �d=0, D+= ��Q1+�Q2�2 and D−=0; for
extended delays, �d→�, the two noises get completely un-
correlated, so that D±=Q1+Q2. As a consequence, the simu-
lation results of Figs. 3�a� and 3�b� reveal the following lim-
iting behaviors of TK

±: �i� For �d→�, both TK
±��d� tend to one

limit, �2.7�, with D±=Q1+Q2, perturbation corrections to
TK

±��� may be computed in powers of D± /�V �1�; �ii� on
subtracting the recycled from the primary noise, the Kram-
ers’ time TK

−��d� tends to diverge; the effect gets amplified at
small �d, when the destructive interference of the two noises
is the most effective; �iii� when adding �1 and �2 with
�d→0, the Kramers’ formula �2.7� still applies but for
D+= ��Q1+�Q2�2. Of course, TK

+�0��TK
±���.

FIG. 2. �Color online� Autocorrelation function C�t� of the pro-
cess �2.1� for Q1=Q2=2 and a=2; the recycled noise �2 is added to
�filled circles� or subtracted �empty circles� from the primary noise
�1 after a delay time �d=1. The solid curves represent the corre-
sponding analytical predictions �2.4�. Inset: C�0�= �x2� vs �d; nota-
tion and the remaining simulation parameters are as in the main
panel.

FIG. 3. �Color online� �a�, �b� Activation process in the bistable
potential V�x�=−ax2 /2+bx4 /4 driven by �1�t�±�2�t�: TK

+

�filled symbols� and TK
− �empty symbols� vs �d for �c=0 and �a�

Q1=Q2=0.5 �squares�, 0.2 �circles�; �b� Q1=Q2=0.025. �c� Prob-
ability density P�x� for �1�t�±�2�t� with �c=0, Q1=Q2=0.025, and
�d=0 �circles�, 0.3 �squares�, and 100 �triangles�. Solid lines repre-
sent the relevant best fits for P�x�=Ne−V�x�/D+; a large discrepancy
is apparent for �d=0.3.
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The �d dependence of TK
±��d� for intermediate delays

�d 1
2TK

±��� is more interesting: The curves TK
+��d� exhibit a

broad peak, whereas the curves TK
−��d� develop a shallow dip

within approximately the same �d interval. This is a manifes-
tation of the so-called resonant activation �20�. Introducing a
delay �d when superimposing two noises �1 and �2 with the
same sign �� sign�, hinders the hopping dynamics for �d
�TK

±���; indeed, increasing �d decorrelates �1 and �2 in time,
i.e., diminishes the effective intensity D+��d�. This effect
goes through a maximum for �d 1

2TK
+��d�: A strong kick of

�1 capable of making the particle reach the top of the barrier
at x=0, will be counterbalanced in average by an opposite
kick of �2, which prevents the particle from falling into the
other well. At even larger �d, the action of the two noises
grows totally uncorrelated and TK

+��d� approaches TK
±���

from above. At variance, combining �1 and �2 with opposite
signs �� sign� produces a synchronization effect; for inter-
mediate delays �d hopping occurs after shorter waiting times,
hence the dip in the TK

±��d� curves.
On lowering Q1 and Q2 the Kramers’ time increases ex-

ponentially; due to the prolonged sojourn at the well bot-
toms, memory effects in the particle dynamics are sup-
pressed and so is the resonant behavior of TK

±��d�. Finally, we
stress that the x probability densities P�x� obey the Boltz-
mann law P�x��e−V�x�/D± only for �d→0 and �d→�. For
intermediate �d values the reduction of the dynamics �2.5� to
a 1D stationary process is questionable �3�, especially in the
vicinity of the barrier; in other words, fitting the simulation
P�x� curves of Fig. 3�c� by means of the Boltzmann law does
not rigorously define D± in Eq. �2.7�, but rather allows to
extract a working estimate of it.

Note that laser systems with optoelectronic feedbacks,
like those described in Refs. �16,21�, are already capable of
experimentally investigating the Kramers’ rate mechanism
driven by delayed noises.

III. A DUMB MAXWELL’S DAEMON

At variance with the models of Sec. II, the recycled noise
�2 can be reinjected so as to modulate the substrate on which
the Brownian particle diffuses subjected to the primary noise
�1. In Ref. �18� we investigated the confined process

ẋ = a�1 + �2�t��x − bx3 + �1�t� , �3.1�

with �1 and �2 defined as in Sec. II and V�x�=−ax2 /a
+bx4 /4 with a, b�0. The SDE �3.1� is not symmetric under
reflection x→−x; this implies that, regardless of the delay �d,
the probability density P�x� is asymmetric. By looking at the
sign of the noises and the potential parameters, one con-
cludes that for �d=0 a positive drive �1 �i.e., tilting the
bistable potential V�x� to the right� corresponds to rising the
right-to-left barrier by a fraction proportional to �2=�1, and
vice versa for �1�0. As a consequence the particle is more
likely to get trapped in the left well and the negative peak of
P�x� overshoots the positive one �gating mechanism
�12,18��. Such a mechanism can be regarded as a dynamical
variation of the phenomenon of stochastic stabilization
induced by multiplicative noise �22�.

Two conflicting effects determine the optimal P�x� asym-
metry: On one side, since the particle takes a finite Kramers’
time to reach the top of the barrier, delaying �2 with respect
to �1 synchronizes their activation effort thus improving the
success rate of the noise assisted hopping; on the other side,
increasing �d larger than �c makes the superposition of the
two noises statistically incoherent and restores the spatial
symmetry of P�x�. In conclusion, for low noise intensities,
the density asymmetry is maximal around �d�c �18�.

In the following we investigate the Brownian motion on a
sinusoidal substrate

ẋ = a�1 + �2�t��cos x + �1�t� + ��t� , �3.2�

where �1 and �2 are colored noises with correlation time �c
and relative delay �d, and ��t� is a Gaussian stationary noise
with ���t��=0, ���t���0��=0, and ���t���0��=2D��t�.
Throughout this section we switch off the thermal noise �,
that is we set D
0.

By the same line of reasoning we outlined for the con-
fined process �3.1�, we expect that the Brownian dynamics
�3.2� gets rectified to the left with negative net velocity
�ẋ��d��. Numerical simulation confirms our expectations, i.e.,
�ẋ��d���0. Figure 4 illustrates the dependence of v��d�

	�ẋ��d��	 on �d for high �panel �a�� and low noise intensities
�panel �b��; in both panels �c=0. The curves v��d� are singu-
lar at the origin: �i� The rectification speed v�0� is fairly
large, in close agreement with the predictions of the Fokker-
Planck formalism �1� �not shown�; �ii� for �d→0+ the net
speed v��d� drops to a much lower nonzero value
v�0+ �
 lim�d→0	�ẋ��d��	. Moreover, for �d�0 the curves
v��d� exhibit a persistent tail that cannot be explained as a
color effect �we recall that here �c=0�.

FIG. 4. �Color online� Characteristic curve v��d�
	�ẋ��d��	 for
the process �3.2� with a=1, D
0, �c=0, and different noise inten-
sities �Q1 ,Q2�: �a� high noise levels, resonant tails; �b� low noise
level, exponential tails versus fitting law �3.3� �dashed lines�. In
both panels �ẋ��d�� is negative.
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In the low noise regime, Q1�2a and Q2�1, v��d� decays
exponentially with fitting law

v��d� = v�0 + �e−a�d, �3.3�

whereas at higher noise levels the curves v��d� develop a
resonant behavior. The low noise �d dependence shows an
obvious resemblance with the Brownian relaxation in a para-
bolic potential driven by a linear superposition of �1 and �2,
see in particular Eq. �2.3�; indeed, when sitting around
the bottom of the substrate wells, the particle is subjected
to two effective additive noises �harmonic or Gaussian
approximation�, like in Sec. II. In such approximation
the exponential decay �3.3� can be explained with the pro-
gressive decorrelation of the recycled versus the primary
noise with increasing �d. The resonant �d dependence of the
rectification effect at higher Q1 ,Q2, instead, can be traced
back to an optimal synchronization of the additive, �1, and
multiplicative fluctuations, �2, which occurs only because of
the nonlinearity of the substrate V�x�. This and related as-
pects of the present rectification mechanism will be
discussed in Sec. IV.

On computing the characteristics �or response� function
v��d�, we remark that the net current �ẋ��d�� obeys
obvious symmetry relations that allow us to restrict the
parameter range to explore: �i� �ẋ�−�d��= �ẋ��d��; �ii�
�ẋ��d��→−�ẋ��d�� upon changing the relative sign of �1 and
�2. Symmetries �i� and �ii� are easy to prove both analytically
and numerically �not shown�.

The peculiar �d dependence of the rectification function
v��d� is important in view of practical applications.
Indeed, in many circumstances, it would be extremely
difficult to recycle a control signal �2�t� so that �d��c;
stated otherwise, measuring v�0� requires a certain degree of
experimental sophistication. On the contrary, if we agree to
work on the resonant tail of its response curve v��d�, a
rectification device described by the SDE �3.2� can be oper-
ated with less effort; the net output current is not the highest,

as v��d�0��v�0�, but is still appreciable and, more impor-
tantly, stable against the accidental floating of the control
parameter �d.

In this sense the scheme represented in Eq. �3.2� is a
simple-minded attempt at implementing the operation of a
Maxwell’s daemon: The ideal device we set up is intended to
gauge the primary random signal �1 at the sampling time t
and, depending on the sign of each reading, to lower or
raise the gate barriers accordingly at a later time t+�d, i.e.,
open or close the trap door. The rectifying power of such a
daemon is far from optimal; lacking the dexterity of Max-
well’s “gate-keeper” �23�, it works “in average” like a
“dumb” automation.

IV. RECTIFICATION PROPERTIES

We discuss now the dependence of the response function
v��d� on the remaining parameters of the process �3.2�.

�1� Dependence on the noise autocorrelation time �c. As
reminded in Ref. �18�, a finite correlation time �c of the
cooperating noises �1 and �2 enhances the asymmetry of the
system response against the relative delay �d. In particular,
the discontinuity v�0� versus v�0+ � in Fig. 4�a� for �c=0, is
replaced by a continuous drop of v��d�, which approaches its
resonant tail down from v�0� on a scale �d�c; conversely,
the tails of v��d� decay exponentially more slowly on in-
creasing �c, until their resonance peak disappears completely
�see Fig. 5�.

�2� Dependence on the noise crosscorrelation. So far, the
recycled and primary noise have been assumed to be fully

FIG. 5. �Color online� Characteristics curve v��d� for the pro-
cess �3.2� with a=1, D
0, Q1=Q2=1, and different autocorreal-
tion times �c.

FIG. 6. �Color online� �a� Characteristics curve v��d� for the
process �3.2� with a=1, Q1=Q2=1, �c=0, and different D. �b� v vs
Q2 with Q1=1 �empty symbols� and vs Q1 with Q2=1 �filled sym-
bols� for different values of ��d ,�c�: squares �0.2, 0.2�, circles
�0.0,0.2�, and triangles �0.2, 2.0�. The remaining simulation param-
eters are D
0 and a=1.
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cross correlated, that is �1 and �2 are both proportional to the
same source �; the relative time delay �d determines an ef-
fective decorrelation in their action on the diffusing particle.
We now switch on the thermal noise ��t� in Eq. �3.2�: The
recycled noise �2 turns out to be only partially correlated
with the total additive noise �1+�, which drives the process
with intensity Q1+D. Thermal noise tends to foil the syn-
chronized effort of �1 and �2; this is a circumstance of current
interest in real experiments �17�. On decreasing the
multiplicative-additive noise cross correlation, e.g., by in-
creasing D, the tails of v��d� in Fig. 6 become less and less
persistent, i.e., decay faster and faster; their resonance
peak shifts towards lower �d values, until it merges into the
narrow peak centered at �d=0 �24�;

�3� Dependence on the recycled-to-primary noise intensity
ratio. The net rectification current speed v exhibits a clearcut
resonant dependence on both Q1 and Q2, separately, regard-
less of the time constants �c and �d—see Fig. 6�b�. This is
certainly true for �d=0, as known from the Fokker-Planck
formalism �20�, but such an effect is more pronounced for
intermediate �c ,�d, namely 0��c ,�d�a. Under optimal
rectification the maxima of v vs Q in Fig. 6�b� occur, as
expected, for Q1�1 and Q2�2a.

V. CONCLUSIONS

The model �3.2� can be regarded as the prototype of a
rectifying device; inspired by biological systems �19�, this
scheme can be employed to design and operate artificial rec-
tifiers, for instance, of magnetic vortices and colloidal par-
ticles. The dependence of the response function v��d� on the
noise parameters, items �1�–�3� of Sec. IV, indicated how to
optimize the net rectification current across the device. The
optimization conditions we determined are consistent with
the maximum efficiency tests of Ref. �25�, not reported in
this paper.

The present investigation was based on the Langevin
equation formalism—see the analytical predictions of Sec. II
and the numerical results of Secs. II–IV. Alternately, one
could try to formulate the description of a stochastic process
x�t� driven by delayed noises in terms of the probability den-
sity P�x , t�, namely by generalizing the Fokker-Planck �FP�
equation formalism �1�. A rigorous FP equation formalism
for SDE with delayed noises is the subject of ongoing
research.
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